3.493 \(\int \frac {a+b \log (c (d+\frac {e}{\sqrt [3]{x}})^n)}{x} \, dx\)

Optimal. Leaf size=51 \[ -3 \log \left (-\frac {e}{d \sqrt [3]{x}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt [3]{x}}\right )^n\right )\right )-3 b n \text {Li}_2\left (\frac {e}{d \sqrt [3]{x}}+1\right ) \]

[Out]

-3*(a+b*ln(c*(d+e/x^(1/3))^n))*ln(-e/d/x^(1/3))-3*b*n*polylog(2,1+e/d/x^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {2454, 2394, 2315} \[ -3 b n \text {PolyLog}\left (2,\frac {e}{d \sqrt [3]{x}}+1\right )-3 \log \left (-\frac {e}{d \sqrt [3]{x}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt [3]{x}}\right )^n\right )\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Log[c*(d + e/x^(1/3))^n])/x,x]

[Out]

-3*(a + b*Log[c*(d + e/x^(1/3))^n])*Log[-(e/(d*x^(1/3)))] - 3*b*n*PolyLog[2, 1 + e/(d*x^(1/3))]

Rule 2315

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]

Rule 2394

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[(e*(f +
g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n]))/g, x] - Dist[(b*e*n)/g, Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2454

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps

\begin {align*} \int \frac {a+b \log \left (c \left (d+\frac {e}{\sqrt [3]{x}}\right )^n\right )}{x} \, dx &=-\left (3 \operatorname {Subst}\left (\int \frac {a+b \log \left (c (d+e x)^n\right )}{x} \, dx,x,\frac {1}{\sqrt [3]{x}}\right )\right )\\ &=-3 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt [3]{x}}\right )^n\right )\right ) \log \left (-\frac {e}{d \sqrt [3]{x}}\right )+(3 b e n) \operatorname {Subst}\left (\int \frac {\log \left (-\frac {e x}{d}\right )}{d+e x} \, dx,x,\frac {1}{\sqrt [3]{x}}\right )\\ &=-3 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt [3]{x}}\right )^n\right )\right ) \log \left (-\frac {e}{d \sqrt [3]{x}}\right )-3 b n \text {Li}_2\left (1+\frac {e}{d \sqrt [3]{x}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 53, normalized size = 1.04 \[ a \log (x)-3 b \log \left (-\frac {e}{d \sqrt [3]{x}}\right ) \log \left (c \left (d+\frac {e}{\sqrt [3]{x}}\right )^n\right )-3 b n \text {Li}_2\left (\frac {d+\frac {e}{\sqrt [3]{x}}}{d}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Log[c*(d + e/x^(1/3))^n])/x,x]

[Out]

-3*b*Log[c*(d + e/x^(1/3))^n]*Log[-(e/(d*x^(1/3)))] + a*Log[x] - 3*b*n*PolyLog[2, (d + e/x^(1/3))/d]

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b \log \left (c \left (\frac {d x + e x^{\frac {2}{3}}}{x}\right )^{n}\right ) + a}{x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/3))^n))/x,x, algorithm="fricas")

[Out]

integral((b*log(c*((d*x + e*x^(2/3))/x)^n) + a)/x, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \log \left (c {\left (d + \frac {e}{x^{\frac {1}{3}}}\right )}^{n}\right ) + a}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/3))^n))/x,x, algorithm="giac")

[Out]

integrate((b*log(c*(d + e/x^(1/3))^n) + a)/x, x)

________________________________________________________________________________________

maple [F]  time = 0.20, size = 0, normalized size = 0.00 \[ \int \frac {b \ln \left (c \left (d +\frac {e}{x^{\frac {1}{3}}}\right )^{n}\right )+a}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*ln(c*(d+e/x^(1/3))^n)+a)/x,x)

[Out]

int((b*ln(c*(d+e/x^(1/3))^n)+a)/x,x)

________________________________________________________________________________________

maxima [B]  time = 1.92, size = 185, normalized size = 3.63 \[ -3 \, {\left (\log \left (\frac {d x^{\frac {1}{3}}}{e} + 1\right ) \log \left (x^{\frac {1}{3}}\right ) + {\rm Li}_2\left (-\frac {d x^{\frac {1}{3}}}{e}\right )\right )} b n + \frac {2 \, b e^{2} n \log \relax (x)^{2} + 12 \, b e^{2} \log \left ({\left (d x^{\frac {1}{3}} + e\right )}^{n}\right ) \log \relax (x) - 12 \, b e^{2} \log \relax (x) \log \left (x^{\frac {1}{3} \, n}\right ) + 9 \, b d^{2} n x^{\frac {2}{3}} - 36 \, b d e n x^{\frac {1}{3}} - 6 \, {\left (b d^{2} n x^{\frac {2}{3}} - 2 \, b d e n x^{\frac {1}{3}}\right )} \log \relax (x) + 12 \, {\left (b e^{2} \log \relax (c) + a e^{2}\right )} \log \relax (x) + \frac {3 \, {\left (2 \, b d^{2} n x \log \relax (x) - 3 \, b d^{2} n x\right )}}{x^{\frac {1}{3}}} - \frac {12 \, {\left (b d e n x \log \relax (x) - 3 \, b d e n x\right )}}{x^{\frac {2}{3}}}}{12 \, e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/3))^n))/x,x, algorithm="maxima")

[Out]

-3*(log(d*x^(1/3)/e + 1)*log(x^(1/3)) + dilog(-d*x^(1/3)/e))*b*n + 1/12*(2*b*e^2*n*log(x)^2 + 12*b*e^2*log((d*
x^(1/3) + e)^n)*log(x) - 12*b*e^2*log(x)*log(x^(1/3*n)) + 9*b*d^2*n*x^(2/3) - 36*b*d*e*n*x^(1/3) - 6*(b*d^2*n*
x^(2/3) - 2*b*d*e*n*x^(1/3))*log(x) + 12*(b*e^2*log(c) + a*e^2)*log(x) + 3*(2*b*d^2*n*x*log(x) - 3*b*d^2*n*x)/
x^(1/3) - 12*(b*d*e*n*x*log(x) - 3*b*d*e*n*x)/x^(2/3))/e^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {a+b\,\ln \left (c\,{\left (d+\frac {e}{x^{1/3}}\right )}^n\right )}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*log(c*(d + e/x^(1/3))^n))/x,x)

[Out]

int((a + b*log(c*(d + e/x^(1/3))^n))/x, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \log {\left (c \left (d + \frac {e}{\sqrt [3]{x}}\right )^{n} \right )}}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*ln(c*(d+e/x**(1/3))**n))/x,x)

[Out]

Integral((a + b*log(c*(d + e/x**(1/3))**n))/x, x)

________________________________________________________________________________________